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We construct and investigate the two-step scheme which is maximally specialized for the 
Schrodinger equation. The new scheme is found to preserve all attractive features of the stan- 
dard Numerov method (ease in programming, flexibility in application, speed in run, etc.) 
with the important advantage of being more efficient for problems involving high values of 
energy. Its effkiency is actually found to be close to that of the piecewise perturbation 
methods, a fact which strongly recommends it for further applications. ‘&I 1987 Academic 

Press, Inc. 

1. INTRODUCTION 

The method of Numerov is very popular among the people who are interested in 
solving the Schrodinger equation and the reason for its popularity is mainly due to 
the fact that it is the simplest and the easiest to program of all the existing methods 
of the same order. 

It was the top method in the sixties, when it was intensively investigated 
mathematically (see, e.g., Cl]) and frequently applied to current problems; but 
afterwards it gradually lost its position in favor of other methods, notably the 
piecewise perturbation methods. For a recent review of the latter see [2, Chap. 31. 

The fact that the method of Numerov is weaker than the piecewise pertubation 
methods (especially when high values of energy are involved) is quite normal; 
whereas the latter methods were specially tailored for the Schrodinger equation, the 
Numerov method was not. It follows that this method may join the competition 
again only after it is adapted for a particular form of a second-order differential 
equation, viz. the Schrodinger equation. 

As a matter of fact, the problem of deriving multistep methods adapted to special 
equations is not new but for many years the investigations were more or less 
sporadic and focused on very particular cases (see, e.g., [3]). These efforts were first 
systematized and brought on a rigorous mathematical basis by Lyche [4] in 1972. 

The theory of Lyche opened the possibility of trying to adapt the Numerov 
method to the Schrbdinger equation and the first adaptations for successive degrees 
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of completeness were reported in [IS, 61. Adaptations of four-step methods were 
also considered [ 71. 

It is important to point out that the algorithms proposed in [5, 6] exhaust the 
potentialities offered by Lyche’s theory, that is, they are the only possible adap- 
tations whose convergence is secured by this theory. Yet, they do not saturate the 
criterion formulated in [6, S] to produce the maximally adapted algorithm, since 
such an algorithm would be of a form whose convergence is no longer secured in 
that frame. 

The purpose of this paper is to derive the maximally adapted algorithm, to 
investigate its convergence, and to show how it behaves in practice. We will find 
that it is convergent indeed, that it is as easy to implement as the standard 
Numerov method, and that its results are not only much better than those of the 
latter but almost as good as the results of the piecewise perturbation methods of the 
same order. 

For the mentioned qualities the new algorithm is again placing the method of 
Numerov in the class of high efficient methods. 

2. DERIVATION OF THE NEW SCHEME 

We here consider the one-dimensional Schrodinger equation 

1” = f(X))‘, f(x) = V(x) - E, .Y E [u. b] {Z.!) 

with nonsingular potential I,‘(x) and focus on the two-step (or three-point) schemes 
to solve it, that is, on schemes of the form 

“o?‘(.~+h)+a,~(.v)+a,?,(.U--II) 

=/2’[bo~~“(.U+h)+blI”‘(x)+ h,f’(x-A)]. (2.2) 

In practice the values of the second-order derivative at s-h. X. and X+/Z must be 
replaced here as indicated in Eq. (2.1). Equation (2.2) becomes an algebraic 
equation connecting the solution values JI(X + h). J(X), and J*(S - h) from which, if 
two are known, the third results directly. 

The method of Numerov is the scheme with the weights 

n,=a,= I, a,=-9 -7 6, = 5, = A. bl=$ (2.3) 

and these weights were obtained on the basis of the simple condition that Eq. (2.2) 
integrates polynomials whose degree is as high as possible. Equation (2.2) -with 
weights (2.3j actually integrates the following set of functions 
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or, equivalently, any polynomial of the fifth degree. In other words, the method of 
Numerov is a scheme valid for atry differential equation of the form 

1”’ = qx, y), x E [a, bl, (2.5) 

provided h is small enough to ensure that the solution of this equation is well 
approximated by a lifth degree polynomial over any elementary subinterval of 
width 211 of [a, b]. In short, this method is an unspecialized method. 

To generate a two-step scheme specialized to the Schrodinger equation (SE) 
means to construct the weights ai and bj on the basis of some conditions which 
explicitly account for the particularity that F(x, v) which occurs in Eq. (2.1) is 
linear in ~7 and a systematic way to accomplish this task was proposed in [6, 81 
and further detailed in [2, Section 3.81. If, over some elementary range of width 2/r, 
we approximate V(x) by some constant V and denote f = V-E, then the solution 
of Eq. (2.1) is well represented by a linear combination of the hierarchized set of 
functions 

exp[ +Jl!‘%], s exp[ -ttr!‘,~], x2 exp[ *f’!‘x], . . . . (2.6) 

The general criterion to generate a method specialized for SE thus consists of 
constructing the weights ai and bi on the basis of a reference set of functions which 
includes pairs from the natural set (2.6) and the more pairs included, the more 
specialized the algorithm. 

The total number of functions admitted in the reference set remains the same as 
in the case of the original option (2.4), that is, six. Three further options thus 
become available viz.: 

and 

1, x, x2, x3, exp[ ff”2~], (2.7 1 
1, x. exp[ +f”‘x], x exp [ ffl/‘x], (2.8 

exp[ -Ff1~2~], x exp [ ff112~], x2 exp[ ffri2x]. (2.9 

In short, the two-step scheme (2.2) admits four levels of specialization for SE, 
where each level is identified by the number of pairs from the natural set. 
Specifically, the standard Numerov method is a zeroth level scheme because the set 
(2.4) embeds no such pair, while the methods based on sets (2.7), (2.X), and (2.9) 
will be in order first, second, and third level schemes. Hereinafter these will be iden- 
tified as S,, li = 0, 1,2,3. All these versions exhibit the common feature of being 
symmetric, that is, a, = az and b, = b2. Without going into detail we only note that 
this is a natural consequence of the particularity of the space spanned by each of 
the four sets (2.4), (2.7), (2.8 j, and (2.9) of being invariant to reflection x + -x, to 
translation x -+ x + Ax, and of remaining closed with respect to the second-order 
differentiation. 
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Versions S, and S2 have been investigated in [S] and in ES], respectivety, and 
the theoretical and experimental results reported there show that S, is more 
efhcient than S, and that Sz is more efficient than both S, and S, . The version S; is 
examined in this paper and, as it will be seen later on, it confirms the expectation of 
being the most efficient of all. 

Constructim qf the Weights of S, 

Equation (2.2) is homogeneous in the weights and thus it is defined up to an 
arbitrary scale factor. For this reason there is no loss in generality if from the very 
beginning we take cl0 = a, = 1. Equation (2.2) reads 

~~(.v+iz)+a,~(s)+~~(~~-~12)=h’~b,~~”(.~+I1)+b,~~“~.~)ib~~~’(~-~)] (2.10) 

and its w-eights are determined below upon the condition that Eq. (2.Le) is 
identically satisfied by all functions of set (2.9). 

On introducing J(X) = exp[f”2.y] into Eq. (2.10) we get 

a,+E+(l,Z)=ZE+(1,Z)b,+Zh, (2.11 ) 

and the same equation results also when we introduce J(X) = exp[ -.I” ?.Y]. Here 
Z = .fk’ and 

E’(n, Z) = exp[rzZ’:‘] + exp[ -fzZ’,2]. n = 1, 2, 3, . . . . (2.!2) 

Likewise, the introduction of y(x) =x exp[ kf’ ‘.Y] gives 

E~(1,Z)=Z’~2[2E+(l,Z)+Z’7-E-(l,Z)]b0+2Z~~hI (2.13) 

and the introduction of )(x) = ,Y’ exp[ +f’,2.~] gives 

E+(1.2)=[2E+(1,Z)+4Z’~~E-(1.Z)+ZE+(1,Z)]b0+26,. (2.14) 

Equations (2.11), (2.13), and (2.14) form a linear algebraic system for the three 
unknowns a,, b,, and b, with the solution 

a,(Z)= -(2+4A(Z)/D(Z)), b,(Z) = B,(Z)i’D(Z), 

b,(Z) = B,(z)/‘D(z), 
i3.15) 

where 

44(Z)= -(l/SZ’~2)[6E-(l,Z)+2Z”2E+(l,Z) 

- 3E-(2, Zj + Z”‘E+(Z, Z) - 6Z”‘], (216) 

Bo(Z)=(1/8z3;2)[Z’.‘E+(1, Z)-E-(1, Zj], (2.17) 

B,(Z) = ( l/8Z3,‘zj[EP(2, Z) + Z”“E+(2, Z) - 6z1.‘2], (2.18) 

D(Z) = (l/sZ”‘j[3E-( 1, Z) + Z1”Ef(l, Z)]. (2.19) 
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Equation (2.10) with weights (2.15) defines the S, scheme; for accurate numerical 
computation of AA(Z), B,(Z), B,(Z), and D(Z), as well as for other technical 
details, see Appendix A. The deviations of al(Z), b,(Z), and b,(Z) from the con- 
stant values - 2? AZ, and 2 corresponding to So are plotted in Fig. 1 for - 3 < Z < 3. 
It is seen that each of the three curves passes through zero when Z = 0, i.e., S, is the 
particular case Z = 0 of S,. This conclusion is also supported by the series 
expansions given in Appendix A. 

3. CONVERGENCE OF S, 

The importance of expressions (2.16), (2.17), (2.18), and (2.19) for the weights 
(similar expressions were also reported by Raptis in [ lo] ) is only academic unless 
it is proved that the resultant S, is indeed a convergent method. 

The main difficulty in proving the convergence of S, comes from the fact that 
both its b weights and one of its a weights are h-dependent; remember that Z=&‘. 
In fact, none of the existing approaches of convergence of multistep methods [4,9] 

0.08 
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FIG. 1. Deviations of the Z dependent weights a,(Z), b,(Z) and h,(Z) of S, from the corresponding 
constant weights of the standard Numerov method, i.e.. &z,(Z) = a,(Z) + 2 = -JA(Z)/D(Z), 66,(Z) = 
E,(Z)jD(Z)--, 6b,(Z)=B,(Z),/D(Z)-;. 
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is here applicable ad litteram and the reason is obvious for Henrici’s approach 
because this was constructed for methods with constant weights. 

Less transparent is the reason in the case of Lyche’s approach [4] since this has 
been constructed for methods with h dependent weights. An attentive examination 
shows, however, that when investigating the two necessary and sufficient conditions 
for convergence, that is, consistence and stability, Lyche treats the former in full 
generality but leaves the latter essentially as in [9]. Lyche’s approach is thus found 
to cover only the methods with h-dependent h and constant N, a class to which 
method S, does not belong. 

Altogether. when examining the convergence of S, we can follow 141 r”or 
consistency but we must treat the stability separately. 

Local Truncation Error und Consistenq 

Since, by its very construction, S, integrates exactly the six functions under 
Eq. (2.9) it follows that the leading term of the local error of S, (we denote it as 
Ed is of the form 

&3(X) = m(x) (3.1 j 

where R(x) =0 is a sixth-order linear differential equation of Euler’s type whose 
solutions are just the mentioned six functions. Its characteristic equation thus is 
1z3-f)3=o, so 

R(x) = y’@ - 3,fjm + 3f’p - f’)!, (3.2) 

The factor K is determined on the basis that, on one hand, the leading term of 
the local truncation error of S, is 

&()(I) = h63,(x), d,(s) = -& p(s): 

and that, on the other hand, S, is the particular case of S; corresponding to Z = 0; 
i.e.. f = 0. It follows that Eqs. (3.1) and (3.3) must be identical when .f = 0, so 
K = -h6!240. 

In conclusion, the leading term of the local truncation error of Sj is 

d,(x) = -&) [ .p(x 

and it shows that S, is consistent. 

Stabilit?, 

In the following we will refer to the general two-step scheme (2.10) where the 
only assumption is that all the written weights are h-dependent. In other words we 
cover ail methods of this type, S, included. 
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In general, the stability of a multistep method to solve differential equations of 
order r is identified as the property of being convergent for the simplest equation 
JI’~‘= 0. In particular, the investigation of the stability of scheme (2.10) means 
simply searching for whether it is convergent fo’r y” =0 and, at this point, it is 
perhaps useful to first briefly review the content of the concept of convergence for 
this particular case. We thus consider the problem 

f’ = 0, x E [a, b], Aa) = A, y’(a) = B, (3.5) 

where A and B are arbitrary constants, with the exact solution Y(X) = A + B(x - a). 
We take some arbitrary value XE (a, 61 and further divide [a, X] into n equally 
spaced subintervals through the mesh points x0 = a, x1 = a + h, . . . . x, = X= a + nh. 
As a matter of fact, it is important to keep in mind that this implies a direct connec- 
tion between IZ and 12, viz. nh = X-a, so that the larger the n, the smaller the h. 

These mesh points are used to propagate the solution of Eq. (3.5) by means of 
algorithm (2.10), that is, by means of the recurrence relation 

Clk+a,(h)y,~,+~l,~,=O, k = 2, 3, . . . . II. (3.6) 

This needs two starting values J’~ and ~1~. The value of J?~ is simply ~1~ = ~,(a) = A, 
while for ~1, we may take any value such that 

lim(g,--y,)/lz=B, (3.7) 
h-0 

a condition which is satisfied if we put y1 = A + Bh + A?‘, with Aqll = dh”, where 6 is 
arbitrary and S> 1. 

Clearly, the final value Y,~ depends on the number of steps we take and the 
definition of the convergence refers to the behavior of yn when n tends to infinity. 
Specifically, scheme (3.6) is called convergent if JJ, tends to J’(X) = A + (X- a)B for 
any A, B, X, 6, and s > 1. 

These points in mind, we have the following 

THEOREM. Ifa, is ofform 

a,(h) = -(2 + da(h)) (3.8) 

with 

Au(h) = O(h’+ “), 9>0 (3.9) 

then scheme (2.10) is stable. 

ProoJ: The idea of the proof consists of showing that if a,(h) satisfies the two 
conditions (3.8) and (3.9) then the recurrence relation (3.6) is convergent. 



MAXIMALLY ADAPTED NUMEROV SCHEME 313 

The latter is simple enough to be treated by hand. If we assume that yk= jk3 
df 0, Eq. (3.6) becomes 

d’-(2+L4a(h))d+1=0, (3.101 

an algebraic equation with two roots d, and d-. These can be written compactly 
as 

d, =~(2+da+(4da+da’)‘,“)=exp[fPi ‘1, (3.11) 

where 

Q(h)=da(k)(l-~da(hj)+O((dn)j’). (3.12) 

Condition (3.9) guarantees that Q(lr) = 0(h2+“), 9 > 0, so that we can write 

Q(h)=h”” dQ(h), Y>O, (3.131 

where ilQ(/zj is a bounded function of I?. 
The general form of yk is a linear combination of dz and dk_ , 

yk=C+ d”, +C- d’i, (3.14) 

and the coefficients C, and C are readily fixed in terms of the starting values via 
conditions I’,, = C, + C- and y, = C, d, + C- d-. 

We are interested in the error at k=n and this is 

E,,=~(.u,,)-L’,1=A.C,+B-C,+6.C, (3.151 

with 

c,=s(r?-l,Qj-s(,,Qj+l, c,= -h(S(n, Q)-l?), 

Cs = -h”S(n, Q), S(P, Q,=E-(p, Q).‘E-(1, Qi. 
(3.16, 

Now, since (2(/r) is of form (3.13), we can use a truncated series of the exponential 
functions which occur in S( p, Q). For y = n we have. in order, 

s(ll Qj = expCf~Q”‘l- expC -He”‘1 
exp[Q’“] +exp[-Q”2] 

=exp[(X-~)(/PdQ)~~~] -exp[-(X-a)(IPAQj”] 
exp[h(P dQ)‘:2] - exp[ --/7(/P AQ)‘,‘] 

X-a 1+(1/6)I~~(X-a)~dQ+... 
=-. 1+(1/6)h*+t9dQ+... h 

1 +;((X-a)“--h*jh”dQ 
1 

(3.17) 
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and, similarly, we find that 

S(n- 1, Q)=yh 
[ 
1+~((X-a-h)2-h2)h’oQ 1 

The following expressions for the coefficients thus result: 

c, e - gP(X- N)(X- a - 17) dQ(h), 

C,-+(X-u+h)C,, c,i 2: -/75--‘(X-a); 

(3.18) 

(3.19) 

and we see that all these tend to zero when h is decreased. In other words, if 
conditions (3.8 j and (3.9) are satisfied, the recurrence relation is convergent and 
then scheme (2.10) is stable. Q.E.D. 

For the particular case of S3, Eqs. (A.1 j and (A.2) show that 

Lla=Ll.l(Z)~D(Z)r -&Z3= -&f3h6, (3.20) 

i.e., conditions (3.8) and (3.9) are satisfied with q = 4 and S3 is then stable. 

4. QUANTITATIVE THEORETICAL ESTIMATE OF THE EFFICIENCY OF S3 

The expressions of the local truncation error for the standard and the maximally 
specialized Numerov schemes are given in Eqs. (3.3) and (3.4), respectively, but 
these formulas do not yet make it clear how much better is S, than S,. To obtain 
this information we must work out these expressions in terms of the very 
Schrodinger equation. 

We first write f(s) of Eq. (2.1) in a form in which the energy dependence is 
conveniently separated. We thus define g(x) = V(X) - V, where V is the previously 
mentioned constant approximation of V(x), and f = B-E. We have 

j-b) = d-Y) +.L (4.1) 

where g(.u) rellects the quality of the constant approximation of V(X) and f embeds 
the energy dependence. Further we express the derivatives JJ”, J,(‘), and ~1’~’ which 
enter d,(x) and d3(.y) in terms of the very equation J” =Lv. We also account for 
that g(“) = y(‘l) fo r any nth order derivative with respect to s and organize the terms 
as polynomials in the energy dependent f: 

JJ2) = $1 + gy (4.2) 

? J”‘=f’y+zfgJ+ [(V2’+g2)y+2Vy’] (4.3) 

1’ ‘6’=f3y+3,f2g~~+f[(3g2+7V(2))y+6Vy’] 

+(g3-t4Vr2+7V(2)g+ v(4))1,+(4~(3)+6v’g)lf’. (4.4) 
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The latter multiplied by -& is exactly A,(X), while for d3(x) we get 

d&u)= -& [4V”‘jj!+ (g3+4v’Z+ 7Vl++ p’)r’ 

+(4V3’+6V’g)f]. 14.5) 

To compare A,(x) and d,(x) we distinguish two situations according to the value 
of E. 

When E is close to the potential, i.e., when f = p- E r 0, only the free terms in 
these polynomials in f are numerically relevant and these are identical in the two 
A’s S, and S, are then expected to exhibit similar accuracies. 

The picture is changing when E is substantially displaced from VT either above, 
i.e., f < 0, or below, i.e., .f $0. In both cases IfI is a big number and thus the first 
term becomes dominating in the polynomials (4.4) and (4.5). For large ;J’I we 
actually obtain the (asymptotic) behaviors 

do(s) = -&,f’y, (4.6j 

d3(s) z -&Jpy, (4.7) 

i.e., the error of the standard Numerov method increases as the third power of ,f 
while that of the new, maximally specialized method S, increases with f only 
linearly, a striking difference indeed. 

5. USER-ORIENTED Issms 

In the following we will repeatedly refer to S3 in the form (AS) which is the most 
convenient for practical use, viz.: 

D(Z)l’(x+/z)- (20(Z)+ilA(Z))~(.u)+D(Z))~(.U-h) 

= h2[B,(Z)f(s + /Z)J’LY + h) + B,(Z)f(.u) y(s) 

+ B,(Z)f(x - 12) I’(” - II)]. (5.1) 

If we put here Z = 0 we obtain the standard Numerov scheme S, so that, except for 
the explicit computation of the Z-dependent weights, S, is as easy to apply as is S,. 

Some issues of practical interest are reviewed below. 

L~ccumulnted Truncation Error 

If S, is used in the forward integration regime, then, as resulted from the general 
theory of Henrici [9], the truncation error accumulated at each mesh point 
xt = a + kk, i.e., 



316 IXARU AND RIZEA 

is of the form 

E, = h4e(x,) + O(h6), (5.3) 

where C(X) is the solution of the initial value problem 

e” =f(x)e + d,(x), e(u) = e’(u) = 0, (5.4) 

called the error equation, where d,(x) is given by Eq. (3.3). 
This theory can be repeated with minor changes to S, and the result is the same 

as abova with the only exception that now the error equation is 

e” = f(x)e + 4 g(x), e(a) = e’(u) = 0, (5.5) 

i.e., with d3(-y) given by Eq. (3.4) in place of 3,(x). 
The conservation of form (5.3) implies that the order of S, and S, is the same 

and equal to four. The real difference for the efficiency of the two methods then 
resides only in the different magnitudes of e(.u) which, in turn, is dictated in terms 
of the different behaviors of 3,(x) and d3(x); the latter issue was discussed in the 
previous section. 

In practice, Eq. (5.5) is useful only insomuch as 4,(x) can be generated 
numerically. The case of large values of E offers such a possibility since the 
asymptotic expression (4.7) is available. For such a case Eq. (5.5) may be effectively 
used (for solving it numerically one can apply just S, in form (A.5)) to decide on 
the step size adjustment, for instance. An alternative, simpler technique for the step 
size adjustment can be derived on the basis of Eq. (B.5) given in Appendix B. 

Round-of Error Propagation and the Summed Form 

It is known that the round-off error accumulated through SO increases as h-2 
and, also, that this dependence can be reduced to a more decent behavior, i.e., hk’, 
if a special form, called the summed form, is used (see, e.g., [9]). 

The same remains true, also, for S3. To derive its summed form we denote 

z(X) = [o(z) - h2B,(z) f(x)] V(X) (5.6) 

to write Eq. (5.1) as 

~(x+hj-k(xj+~(~-h)=h2g(x, Z; h) (5.7) 

with 

g(x z. h) =’ +W)+h2WW + B,(Z))!-(x) z(x), 
> 3 

h2 D(Z) - h’B,(Z)f(x) 
(5.8) 
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Equation (5.7) is further treated as in [2, p. 781 to obtain the desired summed 
form. It is the set of the following two equations: 

Z(X + h j = Z(X) + S(X), (5.3a) 

S(x + h) = S(x) + 
AA(Z) + h2(2B,(Z) + B,(Z))f(x + i7j 

D(Z) - h’B&)f(x + h) 
z(x + 17). (5.3b) 

-with the starting values z(a) and S(a) =,-(a+/?) -z(a). If here we put Z=O, we 
obtain the familiar summed form of So. 

Application of S, to SJlstems of Coupled Equations 

The matrix extension of Eq. (3.1), viz. 

y” = f(x)y, (5.10) 

or, on components, 
,= .\ 

y1’ = c fi,(X)?‘j’ f, = Vii(X) - Ed,, i = 1 3 3 -, . . . . IV2 (5.11) 
j= I 

is known as the coupled channel equation. 
It can be solved directly by scheme (5.1) which, of course, is now a matrix 

equation. Also AA, B,, B,, and D are now N by N diagonai matrices of weights. 
Specifically, let Pii be an approximation to P’J.v) over t-~-h, .Y + h]. We form 

Zj= (Pi,- E)h’ and use it to generate the weights of S, in channel i. The diagonal 
matrices with these weights, viz. 

AA,= 6, AA( Bo, = I,&, 

B,, = b,B,(Zi), D, = 6,P(ZA 

are the ones to be used in the matrix equation (5.1). 

6. NUMERICAL ILLUSTRATION 

To compare experimentally S,, and S3 we have chosen the Woods-Saxon 
potential 

V(x) = z4& 1 + t) + 24, t/( 1 + t)‘, t = exp[(x - .~,)/a,], (6.1) 

where uO= -50, a,=0.6, x0= 7, and u1 = --~,/a, (see [6] and references therein). 
The domain of numerical integration is [a = 0, b = 151 and both schemes have been 
programmed in summed form. 

For the value of P which occurs in S, we use three choices: Choice 1 is 

j7= -50 0 < x < 6.5 
0 6.5 < x < 15, 

(6.2) 
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originally proposed in [6, S] as representing a reasonable step-function 
approximation to V(X) of Eq. (6.1). Choice 2 is the result of the application of the 
procedure proposed in Appendix B. Choice 3 consists of changing V at each 
iteration step; specifically, at the step which involves xi-i, xi, and xi+ i we take 
simply P= V(xi). 

Our test refers to the eigenvalue problem associated to Eq. (2.1). To compute 
the eigenvalues, that is, bound states when E < 0 and resonances when E > 0, we 
adapted the program described in [2, Chap. 51, with the only notable excep- 
tion that now backward integration is used at each test E which occurs in the 
shooting process. 

All computations were carried out on an IBM 370/135 in double precision 
arithmetic and the accuracy gain with S, over S, was found to gradually increase 
with the energy, in full agreement with the theoretical predictions of Section 4. A 
representative selection of the results is given in Table I, where we also added data 
from the CPM(l), which is the best placed piecewise perturbation method of the 
fourth order. 

If the three versions of S, are compared it is seen that the verion corresponding 
to Choice 1 is weaker than the other two. The comparison of the latter two versions 
allows us to acquire some experimental evidence on the range of validity of the 
procedure proposed in Appendix B. We see that the two versions are of similar 
accuracy except for the last resonance at h = & and &. The reason for the 

TABLE I 

Absolute Errors d = Ersr - fYC of the Resonances Calculated 
by Methods So and Sj with Three Choices for P and CPM(l) 

Reference 
resonance sll Choice 1 

s, 
Choice 2 Choice 3 CPM(l) 

E= 53.588872 ii 
& 
iA 

- 230727 586(2) 
-14110 3X2) 

- 879 W) 

E= 163.215341 23 -9106839 

h -419227 

8 -29500 

E = 341.495874 A 
A 
ih 

- 7536068 
-436825 

E=989.701916 & 
h 
23 

- 

716(2) 
44(2) 

2(2) 

1594(2) 
127(2) 

7(2) 

.1443(2) 
412(2) 

24(2) 

107(S) 
a 10) 
O(10) 

83(6) 
lO(7J 
O(7) 

99(5) 
12(5) 

l(5) 

2070(4) 
114(4) 

3(4) 

58(239) 60 
3(479) 4 
O(959) 0 

103(239) 123 
8(479) 10 
O(959) 0 

28(239) 163 
14(479) 17 

l(959) 1 

-5147(239) -42 
17(479) 36 
3(959) 3 

Nore. The errors are given in 1O-6 units. Empty areas indicate that the error there exceeds the 
format allowed in the table. For the S, versions the number of calculations of the weights at each test 
energy in the shooting process is given in parentheses. 
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discrepancy is that in these cases the terms proportional to powers of h higher than 
six, which are disregarded in Eq. (3.4) and also in our procedure, are stili 
numerically important. 

It is quite instructive to compare the methods for computational effort. This can 
be done theoretically by examining their formulas in the same way as in [2. 
Chap. 51 for several methods, S, and CPM( 1) included. The result is that, if the 
weights were already calculated at some previous step of the recurrence procedure, 
the execution time step is the same for So and S, and approximately live times 
smaller than for CPM(l), If the weights must be calculated anew at that step? the 
time for S3 becomes approximately equal to that for CPM(l). 

In Table I we give in parentheses the number of changes of V on [a, 6] or, 
equivalently, the number of calculations of the weights at each test energy. Since 
these numbers are small for Choices 1 and 2 and much smaller than that for 
Choice 3, the times are expected to be roughly equal for S, and S, with Choices 1 
and 2 and about live times smaller than for S; with Choice 3 and for the CPM{ 1). a 
prediction fairly confirmed experimentally. 

The comparison of the best placed S3 versions with CPM( 1) suggests that, for 
one and the same h, they are of comparable accuracy. However, such a conclusion 
is not typical because it happens that the Woods-Saxon potential somewhat favors 
S3. Technically, the reason is that the second derivative of the potential here (note 
that this occurs in Eq. (4.7)) is significantly different from zero only in a very 
narrow subinterval of the integration domain. Our experimental tests on other 
potentials indicate that, at high energies, CPM( 1) performs generally better than 
s,. 

7. CONCLUSIONS 

The method developed in this paper represents the maximal adaptation of a two- 
step scheme to the Schrodinger equation. Our method, abbreviated as S,: is found 
to enjoy the following main properties: 

(i) It retains all the features of the standard Numerov method as, for 
instance, easy to program, flexibility in application, possibility of being extended for 
coupled equations and also for complex potentials. 

(ii) Its order is four. 

(iii) Its error increases linearly with energy (for comparison, it is recalled that 
the increase is cubic for the standard Numerov method) and thus it can be 
successfully applied also for problems involving high values of ,F. 

(iv) If, for the latter problems, S, is compared with the piecewise pertur- 
bation methods on one and the same partition, the advantages are seen to be 
shared. In fact, on one hand, the errors from S, are typically larger than from the 
piecewise perturbation methods but, on the other hand, the computation time is 
often much shorter. 
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APPENDIX A: READY-TO-PROGRAM FORMULAS OF THE WEIGHTS 

Equation (2.10) with the weights (2.15))(2.18) is not yet convenient to be 
implemented as an efficient code and the two main reasons are: 

(i) For small values of 121 the computation of functions 4.4(Z), B,(Z), 
B,(Z), and D(Z) through Eqs. (2.16)-(2.18) is extremely sensitive to the near 
cancellation of like terms. 

(ii) Some values in the range of real, negative Z exist at which D(Z), the 
common denominator of all weights, vanishes and the weights would become 
infinite at these values. 

To cure difficulty (i) a threshold T>O is introduced and series expansions in 
powers of Z are used for AA(Z), B,(Z), B,(Z), and D(Z) for 121 < r, viz., 

hIa, 
AA(Z)= -Z3 1 dA,Zk, Bi(Z) = kr [BJkZk, i=o, 1, 

k-0 k=O 

km, 

D(z)= 1 Dkzk, 

k=O 

where 

1 
dAk=(2k+7)! 

[16.2k(2k+1)+k+5], [Balk= k+l 
2(2k+3)!’ 

Z’k(2k + 5) 
CB1lk= (2k+3)! ’ 

D.= k+2 
’ 2(2k+ I)!’ 

(A.1) 

(A.21 

k max depends on the value of T and also on the accuracy required in the results. In 
our computations we have used T= 1 and the value k,,, = 10 was found sufficient 
to obtain 14 exact figures. 

To speed up the computation it is recommended that coefficients (A.2) are 
generated once, at the beginning of the whole program, and simply called from the 
memory whenever the case IZI < T is active. 

Note also that if we put Z=O in Eq. (A.l) we obtain AA(O) =O, B,(O)=&, 
B,(O) = 2, and D(0) = 1, which are just the weights of the standard Numerov 
method. 

When Z is real and (ZI 3 T we introduce p = IZI l”, (I = 8p, t = l/(yZ), and 

{ 
2 cash p if ZZT 

c= ,2cos p if Zd -T, 

2 sinh p if Z3T 
.S= 

2 sin p if Z<--T, 

(A.3) 
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to get the following ready-to-program formulas: 

4*4(Z)= -[pc(c+2)- 3s(c-2)-qyq, 

E,(Z) = (pc - s)r, 

B,(Z) = Cc(pc+ $I- 414 
D(Z)= (3x-t pcyq. 

(A.4) 

In short, Eqs. (A.1 j-(A.4) enable safe and fast computation of the weights for any 
real Z and only real arithmetic is used in the program. 

There are also cases when V(x) and/or E are complex, as, for instance, when 
investigating quantum absorbtion problems. In such a case, Z is also complex. 
Series (A.ljj(A.2) remain valid for IZI CT but the original functions (2.16)(2.18) 
must be programmed for IZ/ 3 T. Naturally the computer will now work with 
complex arithmetic. 

Difficulty (ii) is readily avoided if Eq. (2.10) with weights (2.15) is first multiplied 
by the common denominator D(Z): 

D(Z)p(.v+hj-(20(Z)+ilA(Z))p(xj+D(Z)g(x-12) 

= h2[E,(Z)~~“(x+ h) + E,(Z)y”(X) + L+)(Z) I”‘(X - h)]. (A.5) 

Indeed, since the zeros of d-4(Z), B,(Z), and B,(Z) are different from the zeros of 
D(Z), Eq. (A.5) works equally well for any Z. 

APPENDIX B: CHOOSING A SUITABLE T 

We first consider the behavior of r(s) and J”(S) in various regions of the 
integration interval. Standard WKB arguments show that in a classically allowed 
region, J,(X) is of the form 

where the amplitude .4(x) and the phase shift cp(.~j are typically almost constant. 
Thus we can write Ill <A(x) and /y’(x) < If(~)l’:“A(~). In a classically 
forbidden region similar arguments indicate that J’(S) and $(,-Y’) behave such as 
I $(xj\/l y(-ujl = J/(,~)1’2 so that, upon introducing 

D(x) = 
1 y’(x)l/A(s) in allowed regions 

I Y’(.~Nl(Y~.~N in forbidden regions, 
(B.2) 

we can write compactly 
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Strictly speaking, the WKB arguments cease to be valid if x is in the vicinity of a 
turning point. Since, however, for typical potentials such regions happen to be very 
narrow, anyway much narrower than the regions where the WKB approximation is 
valid, we feel justified in disregarding the less frequent situations and so we simply 
admit that Eq. (B.3) is valid for any value of .K. 

These points in mind we are ready to tackle the problem of describing 
numerically the local accuracy of S,. We choose the scaled absolute error in the 
classically allowed regions and relative error in the forbidded regions, that is, 

Act(x) = l&3(x)llax) in allowed regions 

I&M ?+~)I in forbidden regions, (B.4) 

and apply Eqs. (3.4), (3.5) and (B.3 j to get that 

Acc(.Y) d &z6AC(~; F) < &&4’(.~; P), 

where 

(B.5) 

A=(x; P) = 1 V4jMxj + 4P)(.~)f(x) + 4V2(x) + g’(x) + UP) g(x)1 

+ 14V3’(.v) + 6f”(.u) g(x)1 . If(x,l lc2, (B.6) 

and 

A’& P) = B(x) + Q(x, B), (B.7 

B(x) = I V4’(x) + 4V”‘(X)f(X) + 4V/“(X)( + 4 1 P’(x)1 If(x)1 ‘I2 (B.8 

Q(x; P) = 1 g(x)1 . [ 1 g2(x) + 3V”‘(?c)l + 6 j V(X)/ If( 1:2]. (B.9 

Upper labels c and I were here used to distinguish between a close and a larger 
bound. 

These formulas can be exploited in various ways, in particular, for finding a 
suitable value for I? If, for instance, we decide to change P at each mesh point, 
Eqs. (B.7) and (B.9) tell us that 9= V(s) is the optimal choice irrespective of the 
energy; with this choice of maximal value of Act(x) over [a, 61 is A= h6/IBII/240, 
where IlBll = max,.I,,, IB(x)l. Such an option is however unpractical since it 
implies the computation of the weights of S, at each local application and this 
strongly increases the computation effort. Also the accuracies are by no means 
uniformly distributed over [a, b]. 

More attractive is to construct a constant piecewise V, 

P= Fk, xEIk= [Xk, &+,), 

k = 0, 1, 2, . . . . k,,,, -To = a, I?~,,, + , = b 
(B.lO) 

consisting of subintervals which are as broad as possible on the condition that the 
maximal accuracy over each I, is maintained at some level around A. Tn our 
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practical procedure this level is 1.1 A and we rely on the mesh points x,, = a + nii as 
the natural reservoir from which the ends of each I, are selected. 

We focus on one such subinterval, that identified by k = K, say, and aiso assume 
that its left-hand end is known, -UK = *yyp. To find the other end and also I”,, we 
successively investigate the intervals [I,, .Y,,+,~], II = I, 2, 3, .,.. At each :z the 
investigation consists of a two step process: 

Strp 1. We construct V as 

r’i= l -.r/J+, 
I iq s ) d-Y. (8.11) 

xy f I, - -yp * + 

Srep 2. We calculate A” (x~+~; V) (standard finite difference representation is 
used to calculate the derivatives of v(Mr)j and compare to 1.1 IIBll. We cover in 
order q= 1, 2, ~.., n and the process is stopped at the first q, at which it is detected 
that Ac(xptq; P) exceeds 1.1 /I BII. In such a case (i) the value xPim n ~ 1 is assigned to 
sK+ i and VK is taken as 

&= 1 ^.Yp*n-, 

i 
P’(x) dx (B.l.2) 

-VP + ,, ~ 1 - Ip xp 

if n> 1 and (ii) SK+,=sP+i and P, = I’(.v, j if IZ = 1. If the test is successful for all 
q. the procedure is repeated from Step 1 with the new n = rr + I. 

Some final remarks follow: 

1. A salient property of the inequalities under (B.5) is that they do not imply 
an explicit knowledge of J(S). The immediate practical consequence is that the 
accuracy can be appraised well before the Schrodinger equation is solved, in con- 
trast to the usual techniques where the solution and the accuracy appraisal advance 
simultaneously. 

7 I. The energy dependence of A’(.u; V) is of the form 

A’(.x; 8) = la(x; 8) + b(x)El + c(x; I’) / d’(s) - El I.‘1 

with obvious identifications for a, 6, and c. This formula can be used in practice to 
easily check for the range of energies for which VP originally constructed on the 
basis of some test energy E,, still remains acceptable. 

3. Inequalities (B.5) are also valid for versions S, and S, provided A’ and A’ 
are correspondingly modified. An inequality of the form 

Act(s) d &$%‘(s) 

can also be derived for the standard Numerov method. As a matter of fact, the step 
size adjustment technique recently proposed by Oset and Salcedo in [I 11 is 
consistent with such an inequality but the approximation of A’(x) used there is 
quite crude. 
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